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1.0 INTRODUCTION

A considerable amount of theoretical and numerical analysis has been
published recently in the general area of unsteady flows and, in
particular, on unsteady transonic flows. However, at the same time there
is a shortage of experimental results [1]. The capabilities of ground
test facilities have actually been surpassed by analytical and computa-
tional methods in many areas of unsteady aerodynamics. One reason is the
inherent problem of obtaining detailed measurements about a moving model.
However, a large class of unsteady flow experiments can be conducted with
stationary models when a controlled oscillatory flow is generated in the
test section. These so called gust tunnels have demonstrated the
potential of providing valuable aerodynamic data [2].

Unfortunately, with few exceptions [3], all existing gust tunnels are
small, low speed facilities. Recently, however, a new concept termed the
"Ball Wall" has been used to introduce oscillations in the transverse
velocity over a wide range of speeds [4]. The new concept utilizes
a temporal variation of the test section wall porosity to produce a fre-
quency range of flow perturbations within the test section that is unique
relative to other gust tunnels. Measureable flow angularity oscillations
were generated at frequencies from quasi-steady to 50 Hz in tunnel (4T) at
the Arnold Engineering Deve]opﬁent Center [4].

Having demonstrated the experimental capability of producing a con-
trolled oscillatory fiow from subsonic incompressible to the transonic
flow regime, a serious question arose concerning the dynamic similarity
due to an oscillating flow as opposed to an oscillating model of equal

frequency and amplitude. Specifically, the question is: is the velocity
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distribution in the neighborhood of the model and the resulting normal and

shear stress distribution equivalent when the free stream contains a
periodic transverse oscillation which is equal in magnitude to transverse
model oscillation?

It is well known [5] that for compressible flow the two problems of
fixed bodies in oscillating flows and oscillation bodies in steady uniform
flows are not equivalent. The discrepancy is due to the inertia term in-
troduced in the boundary layer equations when transforming from the fixed
to the oscillating coordinate system. Thus, the boundary layer equations
are different,and as expected the near field velocity distribution is not
equivalent for the two cases.

A common misconception is that for incompressible flows the two prob-
lems are always equivalent, although for certain in-plane oscillations
equivalent surface stress distributions are produced. One example of
equivalent transverse oscillations is the two-dimensional stagnation point
flow generated by an infinite flat plate. A uniform flow, U_, approaching
a plane wall which oscillates with velocity, V_, given by V

p p
produces the equivalent wall shear stress distribution as that of a fixed

= V0 cos ot

wall which sees a uniform flow with an equivalent transverse component
which is n out of phase. These two problems were first investigated by
Glauert [6] and the kinematic and geometric similarity which produces the
equivalent dynamic effects is physically obvious. In fact a simple
coordinate transformation from one fixed in space to one fixed to the
stagnation point demonstrates the equivalence [6].

Now consider the two distinct problems of a right circular cylinder
undergoing small transverse oscillations in a steady uniform flow and what

appears to be the similar problem of a stationary cylinder subjected to a




steady uniform flow which contains the equivalent transverse oscillations,

i.e. equal frequency and magnitude. For the idealized situation all
points in the flow field have the same vertical oscillation, which is
different from the so-called gust problem where a periodic component is
convected down stream. The gust condition may be a more realistic model
for the conditions created in some wind tunnels, however it is obvious
that the flow field for this condition is not even kinematically similar
to the case of an oscillating cylinder.

If the potential flow field due to a steady uniform form, Uw, plus a |
small transverse oscillating component, given by Vo cos ot is solved, the
1
1

resulting surface velocity for an(r,®) coordinate system fixed to the

EERmnatiE S
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cylinder is

Vo(R,8,t) = -2u_ Sin e - 2V, Cosut Cos o.

The stagnatisn point is then displaced through maximum angle given by

_ 0
Tan °S.P. = U: .

Now consider the corresponding potential flow problem of a uniform

e e — e

steady flow approaching a cylinder undergoing a vertical oscillation of f
identical frequency and amplitude but with a 180° phase difference. Solv-
ing this problem by an analysis similar to that of G. I. Taylor [7], the

resulting surface velocity is given by

vo(R,6,t) = 2U_ Sine - V0 Cosut Cos s.
It is seen that the unsteady part of ve(R,e,t) is different and in fact

the maximum stagnation point excursion is exactly one-half that of the

first case. Jt then follows that the surface shear stress distribution

will also be different, and in the linearized case of small transverse




oscillations is one-half that of the first case. The reason for the
factor of two discrepancy is due to the physical difference in the two
flow fields. In the first problem, the entire flow field oscillates in
time and the presence of the cylinder is essentially ignored. There is no
circulation and the flow is symmetric about the dividing streamline, a
condition which closely approximates the quasi-steady viscous problem. In
the second case the flow field is basically steady, and the unsteady
effects are limited to a small region around the cylinder, known as the
added mass region. An observer fixed on the cylinder sees a negative
velocity, Vo, at infinity, however as the particles approach the cylinder,
they experience a slowly increasing positive velocity field. The net
effect is to produce an asymmetric flow and a stagnation point deflection
of one-half that of the first case.

From this example, even when all points in the fiow field contain a
spatially uniform and instantaneously oscillating transverse component, it
is seen that there is a difference in the near field fluid mechanics. The
differences can become more pronounced,when in fact the spatial distribu-
tion is not quite uniform. This is in fact what occurs near the beginning
of the porous wall region, especially when the freestream velocity is
large [4] and the length of the porous wall is of the same order as the
model.

Having gained some physical insight into the subtle differences of
the two unsteady problems, i.e. oscillation flow fields vs. oscillating
bodies, during the AFOSR Summer Research Program, it was decided to
study the unsteady fluid dynamics around a restricted class of airfoils.

Specifically, the investigation is limited to airfoils having small thick-
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ness ratios so that thin airfoil theory can be employed. This leads to
considerable simplications in the unsteady potential flow analysis and

the subsequent numerical integration of the boundary layer equations.




2.0 MATHEMICAL FORMULATION

The basic problem considered in this investigation is an unsteady
laminar incompressible flow over a two-dimensional thin airfoil. The
concept of a thin airfoil as used in this analysis implies that t/b <<1
as shown in Figure 1. This implies that the mean chord of the airfoil
lies along the X axis to within O[ €], where = a/b and a/t = 0[1]. This
implies that disturbances to the free stream flow generated by the air-
foil are O0[e]. This formulation has distinct mathematical advantages
which will be explored in the following analysis. First, it allows for
an analytical solution to the potential flow field to within 0[52]. And
secondly,it permits a very accurate and stable hybrid numerical scheme to
be employed for the solution of the boundary layer equations. Although
the thin airfoil approximation limits the physical application of the
analysis, its simplicity allows for both physical insight into the un-
steady efforts, and provides a valuable base line analysis for comparison
to subsequent studies which can include airfoil thickness, camber, and
angle of attack.

Specifically, the purpose of this analysis is to compare the effects
of two distinct unsteady flows under the thin airfoil approximation.
First, a uniform free stream approaches the airfoil which is undergoing a
periodic transverse oscillation with respect to the x-y axis of amplitude
a and frequency . as shown in Figure 2a. And secondly, a uniform flow
plus a periodic transverse component approach the same airfoil which is
now fixed with respect to the X-Y axis. This part of the analysis is suf-
ficiently general so that any spatial distribution in the transverse com-

ponent capable of beign represented by a Fourier series can be consider-

.
Aanttatni et it




D o AT

ed. For both conditions the amplitude of the oscillation is "small",
i.e., a/b << 1. This implies that both the airfoil geometry and the
unsteady effect will appear first in the O[c] equations.

2.1 Potential Flow Formulation

In addition to the previous restrictions, the fluid will be assumed

inviscid in this section. This is reasonable under thin airfoil theory,

since without separation the viscous effects are confined to the boundary

layer and the effect of viscosity can be incorporated by a phenomenologi-

cal rule that the velocity at the trailing edge must remain finite and tangent

to the airfoil surface. Finally, in addition to the inviscid assumption,

the fluid will be taken as piezotropic, i.e., o = p(p) only. i
The equations will be formulated in terms of the acceleration

potential, ¢, of the flow field. This approach is selected because ¢ is

continuous throughout the idealized wake in thin airfoil theory whereas

the usual velocity potential is discontinuous. A detailed discussion

of the derivation of the equations can be found in Ref. [8]. Iﬁ this sec-

tion, we simply note that the relavent equations are Euler's equation

written as

vé =U€ (2)

Substituting equation (2) into (1) and integrating with respect to space

yields




F———-—-—-—-————-—-———* -

P
¢ + I %E = constant (3)

Po

Further simplifications plus a discussion of the boundary conditions will
be made in Section 2.3.

2.2. Boundary Layer Formulation

The two dimensional» incompressible, unsteady, laminar boundary layer

equations in terms of the stream function are

2 3
32,4, _a_gazv SAvay o 13, 3y (4)
atay 3y axay axEZ p ax ay3
, v 1
where u = 3y and v = X ;
The unsteady pressure gradient is given by
3l al
_1lap_ e __¢€ 5
23x -3t Y (5]

Adopting the usual body coordinate system shown in Figure 3, the

boundary conditions become

3y - X 0 at y=0 (6a,b)
and

3 ., + c

3¥ Ue(x,t) as y (6c)

In equation (6¢C), Ue(x,t) represents the velocity at the edge of the
boundary layer which will be determined from the potential flow solution.

2.3. Nondimensionalization and Perturbation Equations

Outside the leading edge region, two important length scales




characterize the unsteady boundary layer. They are 65 and SB’ where

1/2 and ¢

8g ~ (v/w) B - (vx/Um)]/z. If no steady flow is present,

the fluctuating part of the flow extends a distaanceaS away from the sur-
face. When a steady flow is superimposed, the two layers interact and

the resulting flow can be quite complicated when the two layers are of
comparable magnitude, i.e. %5 = 0[1]). However, under certain restric-

tions the mathematical analysis can be dramatically simplified. This

occurs if we restrict the magnitude of the transverse oscillating com- 1

ponent, Vo’ such that VO/UQ << 1. This does not limit the analysis
since, by definition of the problem, v0 is less than about 10% of the
free stream velocity due to physical limitations of the wind tunnel.
Referring to Figure 2, we see that V0 ~ wa, thus wa/U_ << 1. This can be
written as («b/U_)e << 1, where ¢ = a/b. This implies wb/U_ = 0[1] or
equivalently «wx/U_ = O[1] except near the leading edge of the airfoil.
However by definition, the boundary layer analysis excludes this region,
thus we conclude wx/U_ = 0[1].

The parameter ﬁE has a special significant, consequently we let
a = 2bw/U_, and o = 8 [1] implies that the two layers are of comparable
magnitude, and either s Or & are acceptable length scales. However,
since ¢ - 0 implies the oscillatory component vanishes, GB is more
appropriate. Accordingly the following nondimensional variables and
parameters are selected for the boundary layer phase of the analysis.

nEEX—WE, CE%B, T

wt

10




(7)

- v - _ a
N - | T . a = . € = >
Re == > (vaum)”2 v b

Substituting equations (7) into equation (4) yields

2- - 2= - 2= 3- -

v  3pdw _dv3v_3y_ _3p
® 373n T 3n 3zan | 3¢ Tl 3 ac (8)

n an
where
- al al
] U - &

Y TR BT (9)

with the following boundary conditions.

i!'.. = H = 0 at n = O (]Oa,b)
an 14

—a-‘y -+ 0 +

an Ve 3 n (10¢)

From the physical description of the problem, it is reasonable to
expect that both the edge velocity, Ue’ and the pressure gradient calcu-

lated from potential flow theory can be expressed as

Ue(c,r) =0, + eﬁ](c,r) + 0[2] (1)

and  _ - 2
Ple,v) = P+ cp](c,r) + 0[] (12)

It then follows that the stream function can be written as

2

vlcin,t30,6) = o(zansa) + edy(z,n,t50) + Oe (13)

. —



et

Substituting equation (13) into the stream function equation yields the

following two equations.

{ - 2 - 2- 3- 5
- 3 3
x To o T lw Tw, )
an_ agan 9% 3n2 an Y4
and
- - 2_ - 3- -
32;] _ 32w1 - 34 " 3 wl - 3y 374y ) 3Py
a 3Tan + wo,n azan * 0,Zn ;1— 0,8 an2 0,nn 3¢ 3'13 4

(15)

IR P

In equation (15) the notation ¥

o.n awo/an is adopted for simplicity.

el

The corresponding set of boundary conditions become

L VG O DA SR UE IR S

dbani e n

[

!

2y v |
__0_ = —O =0 at n = 0 (lﬁa,b) !
an an '
sy - ?
= uo as n + @ {(16c) #
and
v v ’
1 _ 1. = 17a,b ;
ralbliry 0 at n =0 { ) .
!

a@l . , i
Pl as n > & (17¢) 3

In the potential flow region, the characteristic length scale for

both X and Y is simply one-half the airfoil chord, b. The velocity scale

is the free stream velocity, U. The time and acceleration potential are
nondimensionalized by b/ U, and Um2 respectively. All other nondimensional
variables are unchanged. The linearized potential flow equations can now
be easily formulated by again expanding the nondimensional pressure, den-

sity and acceleration potential in terms of ¢. Substituting these

12

R



expansions into equation (8) yields
PLoap  db,

n
O N L I R e e (18)
o ] 5o o1 Py
0
Thus,
30 = constant, for ﬁo = constant; and 5] = - 51/50 X

The linearized field equations can also be easily obtained. First,

Eulers equation becomes

]

t
—

%_ _— and —— = - -_— — (19&,b)

[ad]
(o]
Y
>\
Y]
o+
©
©
@
-

9

where the convective acceleration terms are O[ez]. Similarly, the

continuity equation becomes

- - 3p
S (_a.g.{-i!.)-f___].:o (20)
aX aY at

Equations (19) and (20) can be combined to yield

2-
P
25 1 %N (21)
VP, - — = 0
132 52

For an incompressible fluid the speed of sound, a, approaches

infinity and the 1inearized equation becomes
w2, = 0 (22)

where the substitution 51 = 51/50 was made in equation (22).

[
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Finally, the acceleration components can be linearized as follows:

From equation (2) for two dimensional flow we obtain

- Du and 3 _ Dv (23a,b)

at aY Dt

% W
> lel

Substituting the asymptotic expansion for ¢ and noting that U = Go +

ea](i,v,i> + 0(e2), and equating equal powers of ¢ yields

3 _ Uy o (24) :
— T Uy — t— ‘

aX 0 X at :

Similarly, for ao]/37, we obtain

—_— U ——-—+-—_—‘ (25)

Having formulated the general linearized unsteady equations the solution i
!
for the potential flow region and the boundary layer will be discussed ;

separately.

14




3.0 POTENTIAL FLOW SOLUTION

Within the framework of linearized theory, individual solutions may
be superimposed to generate the complete solution. Thus,the flow field of
an oscillating airfoil with "smail" but finite thickness and camber can be
obtained by the superposition of an unsteady airfoil of zero thickness and
camber and a steady-state solution for an airfoil of small thickness and
camber. However, in this analysis the characteristics of the two distinct
unsteady effects, i.e., oscillating airfoil vs oscillating free stream,
were of primary interest. For this reason, as a first approximation, it
was decided to look at the steady state component for the airfoil with

zero thickness and camber. This approximation permits closed form

analytical solutions to the potential flow. This provides valuabile
physical insight into the role of the bound vorticity and the added mass
effect. In addition, it provides a reference point for further investiga-
tions which can include both small but finite thickness and camber
effects.

3.1 Thin Airfoil Solution

Under these restrictions, the equation describing the unsteady ef-
fects can be written below, where here and in subsequent equations the over-

bar for the nondimensionazl termzs is dropped.
39, 3
—E + ._._é. = 0
aX aY _
The steady state velocity is independent of X, and the linearized accel-

(26)

eration components are given by equations (24) and (25).

Refering to Figure 1, we can write the boundary conditions at the

airfoil surface as

15




Oh ah 3h

ds = ot =58 * Yo ox @r)
and

o) o2 _ a?h L,y 2%h_, 2 20 28)

W g pt? 2 0 Wt To 2

where n(X,t) describes the position of the airfoil. In addition to these

conditions we require u, and v, + 0 as (X2 + Yz)]/2 +

=, plus ¢ must be
finite at the trailing edge. This last condition is known as the Kutta-
Joukowski condition. Unfortunately, due to the conformal transformation
the acceleration potential will not be finite at the leading edge. This
singularity and its subsequent elimination will be discussed in Section
3.2.
It is now that the powerful mathematical techniques of potential

theory can be exploited. It is well known that a two dimensional airfoil

can be treated by conformal mapping. Since the linearized boundary condi-

tions are expanded about=1< X<land Y = 0, we can map this into a circle

by

Thus the boundary conditions in the physical Z plane can be written in the
conformal 7" plane (see figure 4) as

30]

L
1
an )

(7 (r=1, e=Cos']X,t) = ‘37' (X,0,t) Sine (29)

S

In addition, the condition at infinity can be written as

lim Real {w} = constant (30)
|Z*| * o

S s 2 2 el .




where w is the complex acceleration potential given by
W= ooy + iV, = f(X + iY) (31)

%*
In the Z plane, w has the form

*
Wiz =i A B (32)
7 +] Z

where A and B are determined from the prescribed motion of the airfoil by
applying the boundary and Kutta conditions.

3.1.1 Vertical Oscillation of Airfoil

For an airfoil undergoing vertical translation oscillations described

by h = a Cos wt, the solution to the acceleration potential is given by

QT
" cos™! 5t

= ik o) Tan(€25 Xy 4 k% sin(cos e (33)
o
where X = 2¢ -1 (see Figure 3), K = %E =-% and C(k) = F(k) + iG(k)., The

o

function C(k) is known as Theodorsen's function and its value along with
the details of the solution can be found in Ref. [9]. From the defini-
tion of ¢y we see that the unsteady pressure gradient, which is of
interest in the boundary layer analysis is simply

ap 01

1_.,09
Tl 2 3y (;;) (34)

Performing the indicated differentiation, and after lenghty simpli-
fications we obtain the unsteady pressure gradient in boundary layer co-

ordinates given by

ap :
ks ! (a6 - a2(2¢-1)7) - faFle’” (35)
¢ 4.7 (1-z)

The corresponding "edge" velocity can then be found from the unsteady

Bernoulli equation in nondimensional boundary layer coordinates given by

17




Equation (9).

At this point, the potential analysis would be complete for the
oscillating airfoil if it were not for the leading edge, i.e. ¢ + 0,
singularity which is apparent from equation (35).

3.1.2 Vertical Oscillation of Free Stream

The second unsteady flow field in this investigation is that of a
uniform flow in the X direction plus a small periodic component in the Y
direction as shown in Figure 2b. With coordinates fixed on the airfoil,
the effect of this oscillation in dimensional form can be exbressed by
Y = h(X)eiwt. The boundary condition on the airfoil surface given by equa-

tion (26) becomes

_ ah ah
. Q
1~2—t
In nondimensional form we have Y = h(X) e <, thus
cQ
. dh, 17t
(vyldg = (i % h + e (37)

The unsteady transverse velocity may contain a spatial nonuniformity

due to the physical limitations of the wind tunnel. In fact it is difficult

to create a uniform transverse oscillating flow at the wind tunnel centerline.

Typical transverse spatial distributions are shown in Figures 6 and 7 and the
physical characteristics are discussed in Section 4.3. For computational
purposes, h(X) is taken to be CosX, which closely approximates the distribu-
tion shown in Figure 6 and represents one of the more nonuniform conditions.

For this distribution, the "upwash" on the airfoil becomes
:a
ist
(vy)g = (i% CosX - SinX)e 2 (38)

Again, omitting the details which can be found in Ref. [8] or [ 9], we obtain




the unsteady pressure distribution given by

Cos™'x ° - i%E
P] = {2a° Tan(——z———) + 4 nzl a, Sin{nCos "X)le (39)
where .
I c(k)[Po + P]] - Pl {40)
_ ik ik nool (41)

an-FﬁPn']+Pn—ﬁpn+]’ 2
The Pn coefficients are defined in terms of the “"gust" velocity. Using

the relation (see Figure 4) 8 = cos']Y, the coefficients are

I
P, = H vy(e,t) do (42)
[0}
: n
pn = -5 ! v](e,t) Cos(ne) do, n >1 (43)
)

From this, the unsteady pressure gradient in boundary layer coordinates

{cyn,1) becomes

ap -
1 1 -1 it (44)
LI (a. - 4r § a[nCosin Cos ' (2z-1)]1e
)3 2c3/2(7-c)|/2 0 nel D

Equation (44) is the counterpart to equation (39) for an oscillating
airfoil in a steady uniform flow. In fact equation (44) does reduce to
equation (39) if h(x) » a which implies (v )¢ + i% e'". Then P, = -i%
and P = 0 for n > 1 which implies a = -i % C(k) and a; = %E.

Since the pressure gradient given by equation (44) can represent
either of the two distinct unsteady flows, it was used in the boundary con-

dition part of the boundary layer code to calculate the edge velocity
lt("T)' A ten point Gausian quadrative scheme was used, and the first
twenty coefficients were calculated. The truncation accuracy of the

series including twenty coefficients insured overall relative accuracy of

10‘8 which is more than sufficient for the analysis.
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As expected, the unsteady pressure gradient due to a periodic trans-
verse oscillation convected over a stationary airfoil contains a leading
edge singularity. This mathematical singularity must be avoided or re-
moved in some logical manner so that the boundary layer equations can be
integrated. The method selected to accomplish this is discussed in the

next section.

3.2 Leading Edge Solution

Due to the conformal mapping, the pressure gradient has a ;'2 singu-

-1/2

larity at the leading edge and a singularity at the trailing edge.

The trailing edge mathematical singularity is convergent, however, the 4'2
is not. One obvious way of avoiding this difficulty, which is suggested in
Ref. [7] is to simply start the integration at a small distance from the
leading edge at, say 4% chord. Although this does not significantly effect
the unsteady 1ift calculations, it does produce significant changes in the
boundary layer calculations and hence the unsteady drag. For this reason,
the following method was selected for starting the boundary layer calcula-
tions: It is well known that the leading edge region of a two-dimensional
airfoil can be approximated by the stagnation flow around a right circular
cylinder. Consequently, the flow field at the stagnation point of a
cylinder oscilliating with the same amplitude and frequency as the airfoil
can be used as initial values for both Ue and dP/dx in the boundary layer
calcuations.

For a cylinder oscillating vertically in an inviscid uniform flow, the

appropriate field equation in terms of the stream function is simply
vy =0 (45)

The appropriate boundary condition on the surface in (r,g) coordinates is
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where y represents its velocity with respect to (X,Y) as shown in Figure 5.
Following the solution first described by G. I. Taylor [7], the cir-

cumferential velocity at r = R is given by
v,(R,0) = -90 Cos 6 - 2U_ Sin s (47)

Letting 90 = a cos wt, we can easily write the edge velocity, Ue’ in bound-

ary layer coordinates as

Ug(x,t) = 2U_ Sin g + aw Cos ¢ Sin ut (48)

At the stagnation point sin §~* %-and equation (48) becomes F i

_ - i 11 1
Ue(;,r) = 4mg - isee (49) ) 4

where Equation (49) is nondimensional and m = b/R.
The unsteady pressure gradient can now be found from equation (9) by .

expanding both p and Ug in terms of ¢, which yields

aP] 8y, U, aUO
- ..a_c__ = ()-—aT + UO ?‘I’— + U-' —3_4_ (50) l 3
Noting from equation (49) that Uo = 4m; and U] = i % e'" and substituting ;

into equation (50) yields

aP'I 02 . it
T (7~ - 1 Zam)e (51)

The potential flow field is now completely specified by the pressure
gradients given by equations (35) and (44) plus the stagnation point
pressure gradient given by equation (51). It is interesting to compare

equation (35) in the limit as ¢ » 0. Looking at the real part of Py /az




which represents the added mass effect, i.e. neglecting the bound vorticity
component, we have

. dp] (12
1im Real {az—d 5 (52)
z+0

L1}

This is precisely the real part for the cylinder given by equation (51).
This is to be expected, since the cylinder has no circulation and we see

that the singularity in equation (35) is due to the bound vorticity

component.
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4.0 BOUNDARY LAYER RESULTS

4.1 Thin Airfoil Solution

The solution to the boundary layer outside the leading edge region
through 0[€] is given by integrating equations (14) and (15) with the
appropriate boundary conditions and using the results of Section 3.1,
Equation (14) represents the steady flow contribution for an airfoil of zero
thickness and hence zero pressure gradient. This equation can be rewritten

in the usual form by introducing the Blasius similarity variables given by

n 5-———3L~T77 and Vv, = vix,y) = fB(nB) ;
B (vx/U_) B vXUw)]Z? (vXUm)1/2
From these two relations, it follows that
1/2 1/2
n=¢ " ng and wo(r,,n) = ¢ fB(nB) (53a,b)
Substituting equations (53a,b) into Equation (14) yields
fll! _lf fll i} 0
B 2 BB (54.)
with boundary conditions given by
fB(o) = fB(o) =0 (55a,b)

fB(nB*m) + 1

The result, as expected, is the well known Blasius solution.
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Turning now to the unsteady component and using Uy ¢ awo/ar and

Vo z -Bwo/ac, equation (15) can be written as
azw] azw] ay 3zwl

¢ Fnat * Uy agan Vo,n an Vo an {56)

LMt ™

Uo,n3g ~ T3 %
an
where
- 21 v

u, = fB and Vo = —TT7? (anB fB) (57a,b)

From equations (57) we see that in addition to the singularity in the pres-
sure gradient at ¢ = 0, the coefficients also contain singularities. This
presents no additional difficulty, since at & = 0 the corresponding stagna-
tion point boundary layer equations along with the pressure gradient given
by equation (51) are used to start the integration.

The temporal variation in equation (56) can be separated by the complex
exponential time factor. This is due to the linearity of the equation which
is a consequence of the small amplitude transverse oscillation. Represent-

ing the stream function and the pressure gradient in the complex plane as
W](c,n,r) = w](c,n)eTT (58)

and

P,lg,1) = FA’](c)eiT (59)

1

and substituting these into equation (56) yields

Y 2ty v 2 3

(60)

a°y, oy, 0%¥, d31
- + . - — - z -
an o3zan  Yo,n T T Vo : Yy, n 5T 73 I




Fm-—_'—“

This equation could be integrated by a straightforward finite dif-

i ference method, however a more flexible hybrid scheme is adopted. First,

the stream function and the pressure gradient are decomposed into their real
and inaginary parts, i.e., ¥ = L 1?1. Then, only the ¢-direction is
1
finite differenced according to :
- 4
av. vc - w: ! :
3 = Y3 + 0(ac) (61)
1
3
Substituting these results into equation (60) yields the following two equa- ‘J
rions in n: i
" B
[ ] _ () _ _O 1 O,Y'] ‘
ty, Vo ¥y ¥ (VO,n A;)wr t Y.
' dp n u ' u n-1
. _ro__ .0 _ 0,n ;
+ (l\yi ac—} (AC wr AT Wr} (62)
.1
Vo e u | u
..o 0,n
Wy -V vy A;)w1 Frar Y
v dp, n u, n-1
L A A .
- oy HE_} {AC Y, T wi} (63)
g
with the following boundary conditions: P
i
=y =0 t n=-0 i
‘l’r = ‘i’r = a n - (64a,b) ’
¥+ U(c) as e (64c)
L. 0 at n=0 (65a,b)
Yoo Uiled o as s nee | (65¢)




Equations (62) through (65) constitutes a well posed coupled boundary
value problem. Its solution is obtained by using a general purpose spline
collocation code. This particular integration scheme was selected because it
is more versatile, accurate and stable than a full finite difference
approach when solving parabolic equations. The accuracy is controlled by
the step size, Az, since the spline collocation integration in the n direc-
tion is essentially exact (relative error tolerance on the function can be

set at 107/

without convergence difficulties). In addition, as az + 0 the
finite difference characteristics approach the continuum characteristics
which are normal to the r axis. A final justification for adopting this
scheme over full finite difference methods lies in its ability to easily
incorporate moving boundaries. Recall that in the present formulation, the
boundary conditions are applied to the mean position, i.e. Y = 0, of the
oscillating airfoil. However, it would be of interest in future investiga-
tions to study the effect of applying the boundary condition to the moving
surface while holding all other parameters constant. This would then
require only slight modifications to the boundary layer code whereas for
full finite difference methods moving boundaries would introduce major
complications.

Before discussing the results of the numerical solution of equations
(62) through (65) the equations valid in the neighborhood of &= 0 will be
developed. The solution of these stagnation point equations will provide

the starting profile for the boundary layer calculations,

4.2 \Leading Edge Solution.

The flow field near the leading edge is described by equations (14)

through (17) along with the potential flow results of Section 3.2. The same




procedure used in the previous section will be followed in obtaining solu-
tions for both the steady and unsteady flows. For the steady flow, the edge
velocity near ¢ = 0 is given by Ue = 2U_x/R. Equation (14) can be rewritten
if we define the following nondimensional variables:

= y v

n - ’ 9 » Y H
N rsau )12 R (66)

"

o %

The edge velocity suggests that v, be written as GH = chH(nH). Comparing

equations (7) and (66) we see that

= g same L vt =@V (67)
Substituting equations (67) into equation (15) yields

IR RIS R (68)
with the following boundary conditions

fu(0) = f(0) = 0 (692,b)

fé(“H > =) 1 (69c)

The solution as expected is the two dimensional Hieminz stagnation point

flow.

The corresponding unsteady equation can be obtained by first noting

that
' A (70a,b)
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Now writing ¢, and P, as y, = §,(n)e’" and |3](c)eiT we obtain

3 the 3] equation for the stagnation point region given by

. ~ 2 34 A
| &b CO e, Ty 4 AR
* Togqm * Aty g - 2m fngz-';n‘r“zrr (71)

Notice that equation (71) is an ordinary differential equation whereas equa-

tion (60) is a partial differential equation. This is due to the fact that

Uy = i % e'™ which is independent of ¢. Equation (71) now represents a

boundary vaiue problem where the boundary conditions are ;

¥v,(0) = $i(0) =0 (72a,b)

and

A (72¢)
] a

‘)](n-baa) - - .z
The solution is accomplished as before by using a general purpose spline

collocation code to find $]. This is then used as the starting profile for

the unsteady boundary layer solution. The details of the procedure can be

found in the Appendix A.

4.3 Results and Discussion

As stated in the Introduction, the objective of this investigation is

to compare the unsteady surface shear stress created on a thin airfoil
undergoing transverse oscillations to that created by a transverse oscil-
lating flow field. In both cases, a steady uniform flow approaches the
airfoil from far upstream. Also, as discussed in the Introduction, the
transverse oscillation 1is created by a wind tunnel with a time varying wall

porosity. Thus,the actual spatial distribution of this velocity field




that the airfoil experiences will in general be a function of L/H,M_, and
the entrance length from the beginning of the porous section to the leading
edge of the airfoil. Typical results of the spatial distribution calculated
by incompressible potential theory are shown in Figure 6. The details of
this solution are outlined in Appendix B. In this figure, the transverse
velocity at the tunnel centerline is shown for various values of L/H, with-
out any obstructions in the test section. It is obvious that the parameter
L/H has a strong influence on the spatial distribution. For L/H * 1 the
distribution is approximately Cos x whereas for L/H += the spatial distribu-
tion becomes uniform.

Subsonic compressible flow distributions are shown in Figure 7 from
Ref. [4] for purposes of comparison. In this case the Mach number is an
additional parameter, and the two curves become identical as M_ - 0 as ex-
pected.

Once the various parameters, i.e. L/H and the entrance length, are fix-
ed the spatial and temporal transverse velocity at the tunnel centerline is
taken as an input for the boundary layer calculations. Obviously, the
presence of the airfoil will slightly alter this distribution, however
in the present analysis, this "blockage" effect was neglected. It can be
argued that this does not represent a serious limitation in the present
analysis since other effects such as tunnel wall boundary layers, non uni-
formity of the tunnel wall porosity, three dimensional effects, and higher
harmonies created by the actual oscillating flow would be ignored in a po-
tential flow analysis which included the presence of the thin airfoil. In
any case, the present boundary layer analysis would still be applicable
since only the free stream pressure gradient and edge velocity would be
altered and this is treated as simply a boundary condition in the present

study.
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As noted above, in the 1imit as L/H goes to infinity, the centerline
transverse velocity becomes uniform and equal in magnitude to the wall velo-
city. For this condition the oscillating fiow field yields the same un-
steady pressure gradient and edge velocity (and hence the same shear stress
behavior) as the oscillating airfoil except in the leading edge region.

This discrepancy in the L.E. region is due to the mathematical artifice
employed to remove the leading edge singularity and start the boundary layer
calculations. Even with the discrepancy at the leading edge, the relative
difference of integrated shear stress for the oscillating airfoil vs. uni-
form oscillating transverse flow is less than 1%. Consequently, only the
effect of a nonuniform spatial distribution in the transverse velocity needs
to be considered,

A spatial distribution given by h(X) = Cos X was selected for compari-
son with the case of an airfoil oscillating in a uniform flow. This repre-
sents one the worst possible conditions created by a zero entrance Length,
Le’ and L/H near unity. In both cases the frequency and amplitude are
identical. Typical boundary layer velocity profiles for the two cases for
various values of a are shown in Figures 8 and 9, at the 50% chord location.
Notice that for the oscillating airfoil, the free stream disturbance velocity
monotonically approaches zero as a approaches zero. This is apparent from
the form of the pressure gradient given by equation (35) whereas for the
oscillating free stream this is not true. Also notice as o approaches zero,
the velocity profiles in Figure 9 contain very little "overshoot", i.e. the
maximum value is approximately the same as the free stream value. This is to
be expected since o * 0 implies a quasi-steady flow in the boundary layer.
And, finally, notice that the unsteady boundary layer thickness is approxi-

mately equal to the Blasius boundary layer, i.e. n =5, This is a conse-
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quence of the scaling employed such that when o = 0[1], 65/6B = 0[1] at the
mid chord location.

The results of most interest are shown in Figure 10. This represents
the integrated non-dimensional wall shear stress as a function of the non-
dimensional frequency, a, for both the oscillating airfoil and the oscil-
lating free stream. As expected both curves go through the orgin, since
a = 0 implies no oscillation. Notice that for large values of a, both
curves asymptotically approach a constant value and the integrated shear
stress for the oscillating airfoil is approximately 20% less than that for
an oscillating free stream. However, this limit must be interpreted

cautiously since a was restricted to be O[1] in the perturbation analysis.
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5.0 APPENDIXES

Appendix A

The system of equations given by (62) and (63) along with boundary
conditions (64) and (65) represents a coupled set of third order  'ndary
value problems. The solution of this set yields the first order uns*e
disturbance for either an oscillating airfoil or a fixed airfoil v L1
oscillating transverse free stream. The difference between the two caves
being the unsteady pressure gradient in (62) and (63) and the unsteady eugye
velocity in (64c) and (65c). For purposes of this discussion, the

equations are written as

= f](rh Wr" WY" Wl" \y'l) (A])

-
|

\P:l'“ fz(ns \y:'! \pi’ \Pi, \yr) (A'Z)

This set of equations is solved by the use of a general purpose
boundary value code known as COLSYS. This code uses the method of spline-
collocation at Gaussian points and is described in detail in reference
[10]. Only the main "driver" for this code along with the details for
obtaining the local inviscid unsteady pressure gradient is discussed in
this section.

The four subroutines unique to the COLSYS code are: FSUB, DFSUB,
GSUB, and DGSUB. FSUB is the subroutine for evaluating f] and f2 at each
n in the interval 0 < n < n_. DFSUB is the subroutine for evaluating the
Jacobian of f] and f2 at each n. And similarly,GSUB and DGSUB determine

the appropriate boundary conditions and the Jacobian respectively.
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The subroutine A determines the a, coefficients in equation (44)
which are given by (40) and (41). And, finally, the subroutine BC
determines the edge velocities Ur and Ui by solving the perturbation
form of equation (9), which is
U

1

L

BU]

3P,
E 3

14

—

=0 +

(A.3)

]
o

Separating out the periodic component, i.e. e', (A.3) can be

written in integral form as
14

ﬁ‘ = _e—iag J %%_eiac dz (A.4)
g

This equation is then integrated using the Gaussian quadrature subroutine
QGIO0.

A highly schematized diagram of this procedure plus a listing of the

driver program is given next.
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ROV

Lo

10

v

.~ - m e mal s aie

1MPLICIT REAL®A(A=H,=27)

COMMON/AL /SFIR,SFAR,SFIT,5FP1,9%,2T,NPR7IR, NPDTIT

COMANNZAP /DL Z 28 .

COAMMON/BG/ALPHA,EK ,,FK,C

COMIDN/AG/AR,AT

HEAL*B 7€ETA(6),ESPACELLGU000),TULI(WY, 7(8),3F1R(41),8Faulyl),SF3x(uy.
1),SF1I(u1),5FPT(41),8F3Trat),an(P1), 21021

INTEGRR YSPACF (2500),M(2),IPA~(11),1.T0L (4)

EXTERNAL FSUR,DESLB,68UB,DC8UR ,FL TR, FCTT,FR,F I S -

MeNMPz=Q
M(1)=3
Mm(e)=g

ALPHASY 2

Fx=_,5788

BKk==,1%78 .- : : -
CealL A(ALPHA,FK,GK)

vy 5 I=1,21

WRTTE(6,8)T,AR(T),AT(]). —
FORMAT(1X,14,7F14,.6)

XS=20.0

DL7=,0200

=5,

47=,0%

NS=S0 - . . e .

ALFFT=0,0R0
AHINHT:X%
25TACLY=0,000

LE18(2)=0,000 . o o N

ZFTA(R)=0,0Nn0
LeTAa(4)=0,000
e TA(S)=XS- -
ZceTA(AR)=XS

IPAR(T)=0
IPAR()=0
IFARER)=0 -
iPAR(u) =4
1PAR(S)=40000
IPAL(A)=2500
1PAR(7)=1

0y 10 K=A,11
1PAN(KY=(

06N 20 L=t,4
LTOL (LY=L -
oL (Lr=20,10-3

™ '1.".“-.1..& . ssihecaaii

2o




75%=0,000
v TTE (9,30) ALPHAARTGAT

40 FrARWAT(IHL, TALPHAZ! F7 3,4%,"FRFE STREAUMS!,F10.47)
25R=0,0 S |
3SNI=0,0
no 200 ISs1,NS
WRTTE(6,40)78

40 FORMAT(//2/7Y 1S = ",WF7.377)
CALL COLSYS(NCOWP, % ALEFT, ARTRHI,ZFTa, IPAN, L TOL, TOL FIXPHT, [5VACE,
!FSFACF,IFLAG,FSUB,DFSUB.GSU8.063uB,SOLUTN) . - . .
V“?]TF (br u‘J)DPU?QlUpDZI

45 rOKHAT(Y  OPLUZK = ',F10.3,7 DPDZT = ',E10.%7)
X=0,000 . . .- : -

UvnN 100 IC=1,41
CALL APPSLWN(X,Z,FSPACF,TISPACE)Y
SFIR(Ir)=701)
SFenflC)=L(2)
SEAR(ICY=2(%)
E SF1T(Ir)= ()
; SF2T(IC)I=2(%)
‘ SFRI(ICI=Z(A) B
X=X+, )2S%XS
100 ralpIete

Xx=¢,0
on 11 1P=1,11
wwlIE(b,IBO)X,sF?R(IPl.SF3H(IH).SF&I(IP].SESI(IF)
X2 Xe,029%XS
110 CranNTINUF
170 FORuaT(6X,FS,2,4%,4018,5)
AK=Xe  0PS%xS
o 140 1Pzt 3,4%,°
1 WRITF(6,120)%,SFRR(1PY,SF3R(IP),5FET(IP),SF I iIF)
. XSX+¥0 . 03*4XE
1350 FrORTT0r
SSK=S5H+SFSR (1)
5SI1=8S1+5F31 (1)
287+ 2
e CnaTlhile
NRTTF (A, IN0)ESR, 55T
2oy FOPSAT(/1x,"TOTAL SHFEAR STRFS3 = ,PF14,.4)
REgA
[<RUR




L - A~

Fen!

(e

14

d¢y

S0

SUPHM ITINE FSUR(Xx,2,F)
TwPLICTY RFGL*KR(AeH,Na/)

COMmON /A1 /SF IR 3F ey SETL,SFA1, X 3,71, 0K0L78, 0007 ]
CUuMMON/AR /DL, 28

COMMNN /A ;/“0,!){)[\,’ ViU, Vi

COMAi/AG /AL PRA, LK, FK, T
COVMMACH/ASZDPRD , NPRT,OPRR,IPL0,0P] 1,01

ComNNsZaAB/AR, AL

DIMENSTON ZE6)yFiP), SFIRI41),SF2R(41) ,SFHY1Ia1) ,SFaT(d})
DIMFE4STON AR(P1) , AL (A1)

IF(78.¢3,0,000)C0 ¥ 120
xso= Y/SART7S)

I =}

lx=¢

VLA, 025N0%xS

XL=o, 000

Xw=xf +D X

TR OX AF YL At x (LT YRIGD TO 10
XL=XL+Di X -

KSR+ X

IL=IL+
IR= ke
Bl

SFEYRXESSFAR (TLYS(SFIREIR) «SF L (T ) ) * (X=X )/ {xR=YL)
HFRYZSFRR(TLI+(SF2R{10)mSFRRITLII * (XX )/ (XPw®l )
SFUIXSSFUICIL )+ 0Se Y L{TRY«SFITOTLI I * (X=X )/ (XR=X] )
SEAIXZSFRI(TL)+(SFRTI(IA)=SFRPT(TI NI x(x=X 1/ (YreX{])

IF(XYR=-S,0)u0,40G,%0

Fas,0082P%% Y840 1U”TAI#XBxxc+0,01R1324X P xx3el 0000 0Caktbxdats  cut Ui
LUCXh xS

FP20 2241 7T%XF+0, 019508 xRax2al 0G4 12XRA %30 NG EASGaY “hwus’ 00,
IR 22 X 1 -

FRR=0 X320Re) AU T X340 D3ALA XA nRei (DTS00 AR xTal iy 0 waiey
12,=DN NONARTAR A XFR xS

6 TN . &0

Fuzs,Pe 8204 (Xe=5,0n)

FRP=1,0

ForznD_ b

NNxEp

UUNZFPP /7S9%x% 0 . &

VNS, V/72.0/73%k%0 ,Sx(XxA*FPeF()

VMO 5/75%x A8 xFPP

IV (/S ,By,,ueNNYIGN TN 40y
TiHRZINDR SFARX /1L /eyt e Sr I{RX /M7
TamIzlO=SF2TIX /DL 7=HunNaSFITX /007
(CS u/(2,.0825%%1 SeHSYRTI (1 N=7 1))
NPRZRZ7OxAR(Y)
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SLPRAITINE FSUk(x,2,FY

IMPLICTT RELIL*A (A=, N=/)

CoMumtli AV /SF IR, 3F ey, SEFLL,9FAT, X 4,21 ,0FL 2R ,0»07]

CUMMON/AR/DLEL LTS

COMSMNMZAZ /UG, It , viU, Vi)

COAMAGZAG/ALPHA, LK, FK, O -
COIVAMCH/AS/DP RO, DPV] DR, IP[0,5P 11,0 ]e

ComsPdy/sab/AR, AT

DIMENSTON ZER)7F i), SFIRI41),5F2R0{41),5K111d1),5F2T14}) ]
DIMEISTON AR(PL) , A1 (P1)

Dl

IF(725,83,0,000)YC0 15 129
XS5 Y/0SRKRTE7S)

T =)
lx=¢
ULX= 028" 0% xS 1
XL=o nod ’
Xwz ol +NL X
S TF X RF YL AN x LT YRIGD TN 10 ;
KL=XL+ X .
Xe=Xk+OpX
It=IL+3
1R= et
PSR A
1o HF T AazSEFIW{TLY+1SFLI9EIRY =S I (T JY*(XK=XL)/(NF=Y¥YL)
OF WX =SFRS{TLV+(SFA2H(T1X)mSFRR(TL)IR(XaXL)/(XB=LL)
SEVIXZSFUICIL)+tSr (TR YeSHIT(ILIY# (V=X )/ (2R=XtL)
SFEFAIXZSFOT(TVL)#(SFRTI(IR)=SFPT (T VI x(re=XL)}/(Yr=X])

[ e

IF (XE=S,0)ac,a0,50
Qi F oS ,00R2PS%xXYRB 40, 14799 XB kxc+ (0, d1A132%XPaxRed (N6 GukXExrati QU0AYL .

{UeXh*xS

FP=0, 20177 % XF+0, 019030 % xR rsPeD 0G4 14 XRR«3a HGEESGRAwnd+i 000

114l *XHx%xS . _ - .

PPz, B30uheD DV ALUT xX3 40, 03R4 ryx X i x2emii 0TTSN0 xR RxZ40 b nl e s 3

1x=0_N00AZHRxXFRwss P

6 T .60 . -
S0 Fus$,Pe2204(Xp=5,0n)

FPz=1_.0

Fopzn,0
Hir HNZFP

UINSFRR/78%#%x0, %

VISl ,7172.0/73%%0 Cx(XRAxFPeF()

V0 57785kt xFPP

(!

:; IF (/7S B, 0eNNYGN TO 40y

’ TioHRZUNKSF 2R X /1L =uUnMaSFIRX /L7
THRTSUORSFR2TX/DL7=0LNaSFITYX /007
(C=1. 0/ (2, 0%Z3%x%x1 [ SaDSHRFT(1,0=74))
NPRZRz70xAR(Y)

H




a0

AL

L1Y]

21u

e’h

a0y

31v

PPPZI=2C*AL (1Y)

U 70 M=2,10

XM=vie i
AZ=XMxNARCUS (P, ux78=1,0)
T4, 0x75xXMaRCOS(AY)
PENZR=DPDIR-SC»/Cxar (™)
LPN/YSHPN7TSC*7C*AT (4)
DPRSZDPPRIR

UFIe=neDT

F(1)=VNa2(?)-(vnm-un/oL7)tZ(E)—HthZl1)/nLJ-ALPﬁA*Zfﬁ)fuPUI«~TRHR
FrD):vn*l(ﬁl-(Vnh-Uﬂ/DLZ\wl(5)-u”1*7(a)/DLZ+ALPHA-2(P)+rpw7j-rhwr
Kt TURN

XHz=3 xXxNSYRT(C)

I[F(xp=2,0) 06,200,210 ' e ae
FO=e.000T#XR + ,£2a324XPaXd =, 16RST#XBrx3, ¢ (L2246 ARuns,
FR=] . 2UxXR = H3%xYB*XR + CORUNXP +xZ,

GO TG 220 - - -

FO=1, 5628 + ,965x(XBR=2.0)

FP=1,0

VO==2.0xFO*DSURT(C)

Viivz=3,0%xFP*C

DRV 7pz=AlPHARALPHA/Z2.)

UPN7122,0%xAL PHAC . . L -
DREH=DPLER

vwetTn=herp21

Fr1)zsvOa2(3)=V0hw2(2)=ALPHAXT (S)+PVIR
FIR)sVOwZ(h)=VOMRZ(S)+ALPRARZ (D) +0ri/]
HE Tl . - , . -

IC21.0/(2,0%2Taxt 320SRRT(1.0-710) ’ o
WPD7Q@=ZC*aR (1)
NPNZI=ZC*AT(1)

SR 310 =P L,10 . . . R

AM= M-
A7=XMaNBRCNAS(P,ex/T=1,0)
SC=U Ix7TaXMapLCOSIAL)
DONZRENDPNIR<SCH7C* AR (M)
DENZT=GPD?T-SCR7C*AT (M)

WPD2T=(DPRIT+LRTIV) /2.0 . S o -

DPDZR=(NPNZIR+IPROY /2.0
NPRI=NPNZR

LPIYI=NPNZL . -
TNHRSHNKSFRRX /D 7=UNNaSFIRX/DLT7
TART=UORSFR2IX /M Z-UONKSFITIX/DIL?

F(i):vn'z(3)-(vnm-uo/szi;z(p)-ddwki(1i)DLZ-ALrPA;z(5)¥5P”7k-fh~'
r(;)zvn'z(b)-(vhH—UG/DLZ)*Z(q)-UUN*Z(0)/DLZ*ALPhA*l(2)¢0P“71‘7V*I
RETURN

MDD

38

SRR ar= B il




°0

SHRRAGUTINE DFSUB{X,Z,0F)
IMPLICTT REALxE(A-H,0=7)
COMMAONZARLDLE, 28
COMMONZAZ/UG, DIy, VI, VON
COM“ON/AQ/ALPHA,GK,FK,C
DIMENDTUN DFfa,e),7(6)

[F(Z2S.FL,C.0)L0O TO 2O
PF{1,1)==U0N/0UL7
DF(1,2)==vON+uhO/0IL YL
VF(1,3)=Vi
UREt,4)=0,000

UF (1,5)==atLPHA
pF(1,6)=0,.000
OF(2,1)=0G,0600-
DF(2,P)=ALPHA
pF(2,3)=0,000
F(2,4)==UHN/LLY
DFI2,9)==VON+O/OLYZ
DF(2,5)=Vv0

RETIRN

NF(1,1)=0,00n0
UF (1,2)==VUN
DFCY,3)=vN
OF(1,41=0,09
DF(1,5)==ALFHA
DEl1,8)=0 000
nF(2,1)=0,000
DF(e,2)=ALPRA. .
DF(2,3)=6G,000
DF(2,4)=0.GD0
DF(2,5)==vy0N
OF (P,0)=V)
RFETIIRN

ED

SURNOTINE =SLB(T,7,06)
IMPLICTT REALAB(A=H,0=7)
DEIMERSTINON 2(6)

GO TO (1'2'31“'50"‘)1‘»
t32(1)

KRETURY

tz=7(2)

KETUARN

Gz=7(n)

RETURN

6x2(5)

RETHRY

CALL AC (R, L)
G=Z(2)=UF |
KETHRY

CelLL 3C(Uw, 11D
3=Z(%)-ul

kET UK

D
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SURRUUTINE DPGSHR(T,Z,06)
IMPLTCIT RFAL*xAR(A=K,N=7)
DIMENSION Z(6),0G(6).
LN 10 J = 1,6
10 UBCJY = 0,0D0
L GO TO (1,2,2,4,59,86),1
1 D6(1)Y=1.000
RETURY
2 DG(2)=1,000
RETURN
3 us(d)=31,000
. RETUKN .
4 U5(%9)=1.000
RETURN
S 0G(2)=1.000
RETURN
e 0G(%)=1,000
RETURM.
END

SUARKDUTINE A(ALPHA,FXK,GK)

IMAPLICTT REAL*B(A=H,L=7)

DIMEMSTION AR (21).,ALI(21),Fic(2e),PI(22)
COMMON/ZAL/AK AT

COMMAPM/AT /K

EXTERNAL FR,F]I.

o S0 N=1,P2

Ri=N

XL=0,0 . . L -
X(i=3,1415927

CALYL RGINO(XI ,Xti,Fl,PMNR)

CALL QGGL1O(XL,XU,FI,PMNT)

PR(N)==PNR/3,1415927

PI(N)==PNT/3,1415927
AR(1)=FKX(PR(1)+PR(2))=PR(2). = GEX(PL(1)+FI(2)Y) __
ATL(1)=GKx(FPR(1)+PKH(2)) + FFEx(PT(11+PI(2))=-P(2)
Lo KO N=2,21

AR(N)S=l 2S5 ALPHA/Z(N=1))IR(P]I (Net)=PI(N+1))+PR])

ATINI=(,25%ALFPHA/ (N=1) IR (PR (Nel)=PR(N+11)+P (M)
KRETURMN
end . . . . . -
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YY)

SUBROUTINE RC(UR,UT)
IMPLYCTIT REAL*B(A=H,(w7)

CAMMONZAR /DL 2,78 . -

COMMOWZAGZALPHA,GK,FK,C
COMHMON/AS/DPRO, DPRY,DPR2,NPTI0O, D11, DPT2
EXTERNAL ECTR,FETL

1F(7S.Lr. O.UDUO)GU T0 10

XL 0,

xU‘ZS

CALL G610 (XL y XMy FCTR, Y R) — - Cee -
CALL NG10(XL,XU,FCTI. YY)

UR ==YR®DCOS(ALPHAXZS) = YI*NS3TM(ALPHL#Z2S) « UKRY

W] = YReDSINCALRRAXRZS )= YIADCOS(ALHIAXZS) < dle -

KFTURN

IF(25=-0,02D0)d08,3u,R0
UKSURYI=OLZX{UFPRL+DFPRPY /P, 0
ur-UIi-FLZ*fuP11+nPIPl/P 0

PRPZLR - e - - -
ute=ul

e THRYN

UPSURU=GI_ L2 (UPRONPRLIY /2.0
UTsuINeDNLZx(DPTIQ+0PIY) /2.0

URi1z=yR
dIl=suyl
RETURN
uyek=0,0
UlzeALFHA/R O . R
UrRG=UP

utosy

wFTURN

(Y]

3
B

SUHRROGUTTSE 610X, XU,FCT,Y)
IMPLTCTT REALRA(A=n,(1=7)

EXTERMAL FCTR,FCIILFR,FI

AZQ Sx(Xyu+XL)

o=XU=Y|

C=0,4469533x3 _

y=0, 051(1567~(FC1(A¢0)+FCT(A cY)
C=0.43”25337%x1

YSY+ ., NT7472S86 7 (FCTLA+C)+FCT{A=C)
C=0,3497048%3

YIY+D 1NOSQI2X(FLT(A+L)+FCT(A=())
C20,21669722x8 .

Y=vY+0, 1106334*(FCT(A+F)+FFT(A r))
C=0,07443717%8B

YR (Y+0 . 1477621 %x(FCT(A+CI«FLCT(A=C) )
dF TLIRN

END
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100

FURCTION ET(1HFETA) FIniCT [,
I"RPLICTT REALXB(A=ri,(=/)

FROTHFAY
IMPLICTT REALXE(A=H,(i-7)

COMBLN/ALZALPHA,GY ,FK,C COMIMONZAT /K]

cCoOMMOrN/ZAT /K V=0, 0

VISALPHAZ2 0 FRIVRxNCUS{ (K1« )aTHETAL)
FI=VI*x0COS((K1=1)xTnFTA) RETURN

PETLRY ()]

gD

FUMCTTION FCTT(Z5)

IMPILICTT] REML %P (A=H,(i=?)

DIMENSION ARKt(21),48i(21).

COVMAON/AA/ALPHA ,GK ,F¥ ,C

COMmt/nea /AR A

{C=1,0/7€P . 0xZ8»+) SxDSART (1. U=235)) . .
FETI=DSIN(ALPRA#ZS)»7CxAR (1) +NCGS(ALPAART7S)IXZ0%AT ()
I 100 422,10

X" =Me 1 } .

A2=XMeDNARCNS (2, 0*78=] . 0)

HETL xS xXMelICOS (AN
FCTISFCTTI=DSTIN(ALFHAX2S) R IC kYL vAR (™M)« 0COS(ALFSARZS ) wZinsCro ()
nETHRn

E :\:lfn

FOaneTYON FCIRIZ3)

1P TCTYT RHFALRR (A=H,{i=7)
OIMEMSTON Ar(21),A1(2D)
COMMNON/AL/ALFHA, 6K ,FK,C
COMADN/AR/AR LA

L 0/ (P 0k7oe%) [ SxUSGRT(1,0=eZ28)) .
FCTR=NCUS(ALPHA#78)Y 2 7C AR (1) =DNS T ALPHAXRZ D) * 70 *AT (1)

9 100 ¥22,10

XMZMa i .

AZ=xbxDARCOUS(2,0%7S8=1,0)

SC=d 0 7Sk XMRCOS (A7)
FOCIRSFCTR=NCOSTALFHA*7S)I X Z2Cx SO AR (M) DSIN(ALFHAXR/S)AZCASCxAT (V)
KET1RN
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Appendix B

The actual flow field induced by temporal variations of the test
section wall porosity to an otherwise imcompressibie uniform wind tunnel
flow is a function of the Reynolds number, entrance length (Le), L/H, and

the geometry of the model in the test section. Other effects such as free

stream turbulence, the details of the flow through the porous section and

the frequency of oscillation can be important. However, a reasonable ap-

VR VPR BV PICE) -

proximation to the unsteady oscillations can be obtained in analytical form

if a potential flow model is adopted. This is the same basic restriction >

e

employed in reference [4].

Refering to Figure 11, and considering the effect of the variable wall

- —
PR R T

porosity without any obstructions in the test section, the potential function

is given by solving b
Ve = 0 (B.1)

subject to the following boundary conditions

Vo(x) Cos wt , -L<xgL
3| = e B (8.2) ,
ay L-O’H 0 s [X' 2-% :
!
|
3 3
2Ly, and 5-3» 0 as |x] + = (B.3)

The solution to this system of equations can be found in closed form

by using the Fourier Transform Method. First writing ¢(x,y,t) = ¢S(x,y) Cos wt,

as a consequence of linearity of the system, and then introducing the Fourier




transform defined below.

+ o
o(s,y) = = ¢S(x,y)e"sx dx (B.4)
v Zm
The original system of equations becomes
2
2. 29=0, (B.5)
dy
with the boundary condition
do
dy y=0,H 0 )
where
+
v (s) = —‘—Jv (x) e 7% dx (8.7)
0 — 10
Yon

- 00

Solving for d¢/dy, which is the variable of interest, we obtain

do _ Sinh sy + Sinh s(H-y)
dy Vo(s) Sinh sH ) (.8)

Taking the inverse transform and using (B.7) yields

+]/2 +

s 7 Sinh sy + Si - is(x-

s .1 sy + Sinh s(H-y) _is(x-£)

3y 2n Vo(g) Sinh sH € dsp dg (B.9)
-1/2 -

Integrating (B.9) with respect to the transform variable s, yields

kb = A it




+L/2
n{H-y) _
s _sin _H v, () de

3 2H N
y Cos h _M_ + Co S E.(.H;u
172 H H

+L/2
1y
Sin A Vole) d

2 Cosh ﬁﬁﬁlél-+ Cos El

(8.10)

-y

This is as far as the solution can be taken for arbitrary values of
Vo(g). However, for the uniform porosity situation, i.e. V, = constant,

the solution can be found in closed form.

The final form, although lengthy, has certain advantages over a e
numerical solution and is given below, for |x| < Ly, ‘
.

3¢ v . - ) + b

5o = e {5inT Bi 4 sin7! A .

B C

#sinT Ay gyt Ay (B.11)
B C

where
+ my Tix + &
A" = Cos H Cosh H(xi 2)
LA Tix - L ny
B- = Cosh H(x 2) + Cos
L Teg 4+ L ny
C* = Cosh z(x + 3) * Cos q

45
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Similarly, for the region |x| _<__lz, the y-component of velocity is

given by
?_cgs_ = Y.Q. Sin'] lﬂ‘: S -1 .]'_*Aj
y 2 B+ C+
1 1-A 1 1-A"
+ Sin” — - Sin~' = (B.12)

The results for various values of L/H are shown in Figure 6.
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Figure 1. Airfoil geometry and coordinate system

Ueo h=a Cos wt
—» v

Figure 2.a. Oscillating airfoil in a uniform stream
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Figure 2.b. Fixed airfoil with an oscillating transverse flow

“8

ki,




A
YN X= x-b+ o]
\>/,~hl—— Y-'y+OEﬂ
]
_.b "b

Figure 3. Potential flow and boundary layer coordinates
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Figure 4. Conformal mapping of line segment into a circle
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Figure 5. Circular cylinder oscillating in a uniform flow
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Figure 6. Spatial distribution of transverse velocity at wind tunnel centerline
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Figure 7. Spatial distribution for subsonic compressible flow from reference [4)
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Real part of the complex velocity for the

oscillating free stream at ¢

Figure 8a.
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Imaginary pert of the complex velocity for the

oscillating freestrem at ¢
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